# Synthesis of a novel planar hexaosmium carbonyl cluster: crystal structure of $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{20}\left(\mu-\eta^{2}-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\right]$ 

Wai-Yeung Wong, Wing-Tak Wong *<br>Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong

Received 5 April 1995


#### Abstract

The alkylidyne cluster $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CNC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}_{2}\right)\right](1)$ reacts with the triosmium cluster $\left[\mathrm{Os} 3(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ to yield the 94-electron organometallic cluster $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{20}\left(\mu-\eta^{2}-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\right]$ (3). Complex 3 has been shown by X-ray structure analysis to possess an unprecedented planar $\mathrm{Os}_{6}$ metal geometry in which an open triosmium chain is fused to an edge of an osmium triangle through two Os-Os bonds and a bridging hydride.


Keywords: Synthesis; Carbonyl cluster; Crystal structure; Alkylidyne cluster

We have recently reported the preparation of a triosmium alkylidyne cluster $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CNC}_{5} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\mathrm{CH}=\mathrm{CH}_{2}$ ) ] (1) and show that 1 readily undergoes thermal rearrangement to afford an alkylidene cluster $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9}\left(\mu-\mathrm{C}(\mathrm{H}) \mathrm{NC}_{5} \mathrm{H}_{4}-\eta^{2}-\mathrm{CH}=\mathrm{CH}_{2}\right)\right]$ (2), the structure of which reveals the presence of an $\eta^{2}$ coordination from the vinyl group to one osmium atom [1]. Lewis and coworkers [2] have also shown that the complex $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ readily reacts with $2-$ vinylpyridine with $\mathrm{C}-\mathrm{H}$ bond cleavage at the vinyl carbon atom to give the trinuclear cluster $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9^{-}}\right.$ $\left.\mathrm{L}\left(\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\right]\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)$ with an open structure. In light of this observation, investigation of the possibility of linking two cluster units by treating 1 with $\left[\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}\right]$ under thermolytic conditions was pursued. In this way, it is hoped that isolation of good intermediates in the synthesis of high nuclearity cluster complexes can be achieved. In this communication, we report the synthesis and full characterization of a novel 94 electron $\mathrm{Os}_{6}$ carbonyl cluster, which contains a rare open planar metal framework.

The reaction of $\left[\mathrm{H}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CNC}_{5} \mathrm{H}_{4} \mathrm{CH}=\right.\right.$ $\mathrm{CH}_{2}$ )] (1) with a slight excess of the activated cluster

[^0][ $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ ] in refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 16 h gives the hexanuclear cluster $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{20}\left(\mu-\eta^{2}-\right.\right.$ $\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}$ )] (3) with a moderate yield ( $34 \%$ ) after purification by thin layer chromatography on silica with $n$-hexane: $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70: 30, \mathrm{v} / \mathrm{v})$ as eluent (Scheme 1). Several other compounds with low yields in this reaction remain unidentified. Complex $\mathbf{3}$ was initially characterized ${ }^{1}$ on the basis of the parent molecular ion at 1807 in its mass spectrum. The IR spectrum shows the absence of any bridging carbonyl ligands. The ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ shows four signals for the heterocycle, which hence remains intact, and two coupled doublets ( $\delta-5.76$ and 9.29 ppm ) for the $\mathrm{CH}=\mathrm{CH}$ group. The coupling of 7 Hz between these two protons and their chemical shifts indicates that the two hydrogen atoms in the $\mathrm{CH}=\mathrm{CH}$ group are in cis configuration. In order to establish the overall geometry of the cluster and

[^1]

Scheme 1.
the mode of coordination of the organic group, singlecrystal X-ray analysis was undertaken ${ }^{2}$.

Red crystals of 3 suitable for diffraction experiment were grown by slow evaporation of a solution of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ at room temperature for a period of 3 days. The molecular structure of $\mathbf{3}$ is illustrated in Fig. 1 , together with some important bond parameters. The metal framework consists of an almost planar hexaosmium geometry (maximum deviation from the leastsquares plane, $0.069 \AA$ ) in which an open triosmium chain is fused to one edge of an osmium triangle through two Os-Os bonds and a hydride bridge. The formation of 3 is accompanied by the coupling of two $\mathrm{Os}_{3}$ units with the opening out of an Os-Os edge. Such a metal framework is previously unknown in osmium cluster chemistry. The two metal-metal distances $\mathrm{Os}(1)-\mathrm{Os}(2), 2.823(3) \AA$, and $\mathrm{Os}(2)-\mathrm{Os}(3), 2.897(3) \AA$, are within the range expected for $\mathrm{Os}-\mathrm{Os}$ single bonds, and the $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ fragment deviates from a linear geometry $\left(\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3), 159.5(1)^{\circ}\right)$. The 20 carbonyl ligands are terminally bound to the metals; four each to $\operatorname{Os}(5)$ and $\operatorname{Os}(6)$ and three each to $\operatorname{Os}(1)$, $\mathrm{Os}(2), \mathrm{Os}(3)$ and $\mathrm{Os}(4)$. The hydride ligand, inferred by its signal in the ${ }^{1} \mathrm{H}$ NMR spectrum of 3 was revealed from difference Fourier technique at final stage of refinement of the structure and was found to bridge the relatively long $\mathrm{Os}(3)-\mathrm{Os}(6)$ edge $(\mathrm{Os}(3)-\mathrm{Os}(6)$,

[^2]$3.041(3) \AA$ ). The bending of the $\mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3)$ chain away from linearity is probably the result of the $\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}$ bridge with the $\eta^{2}$-bonding mode at the $\mathrm{Os}(2)$ atom. The $\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}$ ligand forms two $\sigma$ bonds to $\mathrm{Os}(1)(\mathrm{Os}(1)-\mathrm{N}(1), 2.12(4) \AA$; $\mathrm{Os}(1)-\mathrm{C}(21)$, $2.14(5) \AA)$ and a $\pi$ bonds to $\operatorname{Os}(2)(\operatorname{Os}(2)-C(21)$, $2.26(5) \AA)$. Thus it is a five-electron donor. The resulting five-membered metallocycle is nearly planar (maximum deviation, $0.22 \AA$ ) and the dihedral angle between the $\mathrm{Os}_{6}$ plane and the $\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHOs}$ plane is $39.3^{\circ}$. Metallation at the vinyl carbon of 2-vinylpyridine to afford a five-membered chelate ring is frequently observed in transition metal chemistry such as in $\left[\mathrm{RhCl}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\left(\mathrm{PBu}_{3}\right)_{2}\right] \quad[5], \quad\left[\mathrm{Re}\left(\mathrm{NC}_{5} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\left.\mathrm{CH}=\mathrm{CH})(\mathrm{CO})_{4}\right] \quad[6]$ and $\left[\mathrm{HOs}_{3}(\mathrm{CO})_{9} \mathrm{~L}\left(\mathrm{NC}_{5}-\right.\right.$ $\left.\mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)$ ] $\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)$ [2] but with the $\mathrm{C}=\mathrm{C}$ bond coordinated to an adjacent metal atom in the cluster. In terms of electron counting, the complex


Fig. 1. Molecular structure of 3 , showing the atom-numbering scheme, with selected bond distances and angles: $\operatorname{Os}(1)-\operatorname{Os}(2), 2.823(3) \AA$; $\mathrm{Os}(2)-\mathrm{Os}(3), 2.897(3) \AA ; \mathrm{Os}(3)-\mathrm{Os}(4), 2.914(4) \AA ; \operatorname{Os}(4)-\mathrm{Os}(5)$, $2.813(4) \AA ; \operatorname{Os}(4)-\operatorname{Os}(6), 2.923(4) \AA ; \operatorname{Os}(5)-\operatorname{Os}(6), 2.961(4) \AA ;$ $\mathrm{Os}(3) \cdots \mathrm{Os}(6), 3.041(3) \AA$ Os(1)-N(1), 2.12(4) $\AA$; $\mathrm{Os}(1)-\mathrm{C}(21)$, $2.14(5) \AA$; $\mathrm{Os}(2)-\mathrm{C}(21), 2.26(5) \AA ; \mathrm{Os}(2)-\mathrm{C}(22), 2.33(6) \AA ; C(21)-$ $\mathrm{C}(22), 1.40(7) \AA ; \mathrm{Os}(1)-\mathrm{Os}(2)-\mathrm{Os}(3), 159.5(1)^{\circ} ; \mathrm{Os}(2)-\mathrm{Os}(3)-$ $\mathrm{Os}(4), 110.1(1)^{\circ} ; \mathrm{Os}(3)-\mathrm{Os}(4)-\mathrm{Os}(5), 124.8(1)^{\circ} ; \mathrm{Os}(3)-\mathrm{Os}(4)-\operatorname{Os}(6)$, $62.82(9)^{\circ} ; \quad \mathrm{Os}(5)-\mathrm{Os}(4)-\mathrm{Os}(6), \quad 62.1(1)^{\circ} ; \operatorname{Os}(4)-\mathrm{Os}(5)-\mathrm{Os}(6)$, $60.76(9)^{\circ} ; \mathrm{Os}(4)-\mathrm{Os}(6)-\mathrm{Os}(5), 57.11(9) ; \mathrm{Os}(1)-\mathrm{C}(21)-\mathrm{Os}(2), 79(1)^{\circ}$; $\mathrm{N}(1)-\mathrm{Os}(1)-\mathrm{C}(21), 80(1)^{\circ} ; \mathrm{C}(21)-\mathrm{Os}(2)-\mathrm{C}(22), 35(1)^{\circ}$.
$\left[\mathrm{HOs}_{6}(\mathrm{CO})_{20}\left(\mu-\eta^{2}-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\right]$ (3) is a 94-electron system with seven metal-metal bonds. This is in accordance with the effective atomic number rule and it has four more electrons than the 90 -electron $\left[\mathrm{Os}_{6} \mathrm{~S}(\mathrm{CO})_{19}\right.$ ] [7] complex with rhombic six-atom-raft geometry. We are currently investigating the mechanism for this cluster coupling reaction, which involves a $\mathrm{CH}_{2}$ fragment loss from the starting alkylidyne cluster, and the reactivity of the title complex.

## Acknowledgements

We gratefully acknowledge financial support for this work from the Hong Kong Research Grants Council and the University of Hong Kong. W.-Y.W. thanks the Croucher Foundation for financial support.

## References

[1] S. Chan, W.Y. Wong and W.T. Wong, J, Organomet. Chem., 474 (1994) C30.
[2] K. Burgess, H.D. Holden, B.F.G. Johnson, J. Lewis, M.B. Hursthouse, N.P.C. Walker, A.J. Deeming, P.J. Manning and R. Peters, J. Chem. Soc., Dalton Trans., (1985) 85.
[3] M.C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, G. Polidori, R. Spagna and D. Viterbo, J. Appl. Crystallogr., 22 (1989) 389.
[4] TeXsan: Crystal Structure Analysis Package, Molecular Structure Corporation, 1985, 1992.
[5] R.J. Foot and B.T. Heaton, J. Chem. Soc., Chem. Commun., (1973) 838.
[6] M.I. Bruce, B.L. Goodall and I. Matsuda, Aust. J. Chem., 28 (1975) 1259.
[7] R.D. Adams, I.T. Horvath and P. Mathur. Organometallics. 3 (1984) 623.


[^0]:    * Corresponding author

[^1]:    ${ }^{1}$ Spectroscopic data for $\left[\mathrm{HOs}_{6}(\mathrm{CO})_{20}\left(\mu-\eta^{2}-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)\right]$ (3). IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}) 2123 \mathrm{w}, 2106 \mathrm{vw}, 2083 \mathrm{~s}, 2073 \mathrm{~m}, 2050 \mathrm{~s}, 2039 \mathrm{vs}$, $2017 \mathrm{~s}, 2006 \mathrm{~s}, 1981 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 9.29(\mathrm{~d}, 1 \mathrm{H}$, $J=7.0 \mathrm{~Hz}, \mathrm{CH}=\mathrm{CH}), 8.59\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 7.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $7.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$ ), $6.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 5.76(\mathrm{~d}, 1 \mathrm{H}, J=7.0$ $\mathrm{Hz}, \mathrm{CH}=\mathrm{CH}),-13.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OsH}) \mathrm{ppm}$. Positive fast atom bombardment mass spectroscopy (nitrobenzyl alcohol as matrix): $m / z$ 1807 (1807 simulated).

[^2]:    ${ }^{2}$ Crystal data for 3: $\mathrm{C}_{27} \mathrm{H}_{7} \mathrm{NO}_{20} \mathrm{Os}_{6} \mathrm{CH}_{2} \mathrm{Cl}_{2} ; \quad M=1806.51$ (1891.48 with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); monoclinic; space group, $P 2_{1} / \mathrm{c}$ (No. 14); $a=9.934(5), \quad b=13.164(4)$, and $c=30.383(7) \AA$; $\beta=97.63(4)^{\circ}$; $U=3937(2) \AA^{3} ; Z=4 ; D_{\mathrm{c}}=3.190 \mathrm{~g} \mathrm{~cm}^{-3} ; F(000)=3336$; Mo K $\alpha$ radiation $(\lambda=0.71073 \AA) ; \mu\left(\right.$ Mo K $\alpha$ ) $=194.87 \mathrm{~cm}^{-1}$; red needles of dimensions of $0.15 \times 0.18 \times 0.34 \mathrm{~mm} ; 5431$ unique data measured at 298 K on a Rigaku AFCTR diffractometer ( $2 \theta_{\text {max }}=45^{\circ}$ ); absorption corrected by $\Psi$ scan method; 2202 observed (I>3o(I)). Structure solved by direct methods (SR88) [5] and Fourier difference techniques, refined by full-matrix least-squares analysis ( Os and Cl anisotropic) to $R=0.076$ and $R_{n}=0.086, w=4 F_{0}^{2} /\left[\sigma^{2}\left(F_{0}^{2}\right)+\right.$ $0.024\left(F_{0}^{2}\right)^{2}$ ]; program used teXsan [4]. Atomic coordinates, thermal parameters and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

